244 research outputs found

    Canonical transformation theory for multireference problems

    Get PDF
    We propose a theory to describe dynamic correlations in bonding situations where there is also significant nondynamic character. We call this the canonical transformation (CT) theory. When combined with a suitable description of nondynamic correlation, such as given by a complete-active-space self-consistent Field (CASSCF) or density matrix renormalization group wave function, it provides a theory to describe bonding situations across the entire potential energy surface with quantitative accuracy for both dynamic and nondynamic correlation. The canonical transformation theory uses a unitary exponential ansatz, is size consistent, and has a computational cost of the same order as a single-reference coupled cluster theory with the same level of excitations. Calculations using the CASSCF based CT method with single and double operators for the potential energy curves for water and nitrogen molecules, the BeH_2 insertion reaction, and hydrogen fluoride and boron hydride bond breaking, consistently yield quantitative accuracies typical of equilibrium region coupled cluster theory, but across all geometries, and better than obtained with multireference perturbation theory

    Canonical transformation theory from extended normal ordering

    Get PDF
    The canonical transformation theory of Yanai and Chan [J. Chem. Phys. 124, 194106 (2006)] provides a rigorously size-extensive description of dynamical correlation in multireference problems. Here we describe a new formulation of the theory based on the extended normal ordering procedure of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. On studies of the water, nitrogen, and iron oxide potential energy curves, the linearized canonical transformation singles and doubles theory is competitive in accuracy with some of the best multireference methods, such as the multireference averaged coupled pair functional, while computational timings (in the case of the iron oxide molecule) are two to three orders of magnitude faster and comparable to those of the complete active space second-order perturbation theory. The results presented here are greatly improved both in accuracy and in cost over our earlier study as the result of a new numerical algorithm for solving the amplitude equations

    Application of PLD-Fabricated Thick-Film Permanent Magnets

    Get PDF
    Isotropic Nd-Fe-B thick-film magnets have been prepared using a pulsed laser deposition (PLD) method with the control of laser energy density (LED) followed by post-annealing. The characteristics of the method are a high deposition rate up to several tens of microns per hour together with a reliability of magnetic properties due to the good transfer of composition from an Nd-Fe-B target to a film. Several micro-machines comprising the isotropic Nd-Fe-B films such as a miniaturized DC motor and a swimming machine in liquid were demonstrated. Furthermore, the deposition of isotropic Nd (or Pr)-Fe-B thick-film magnets on a Si or glass substrate was carried out to apply the films to various micro-electro-mechanical-systems (MEMS). We also introduced the preparation of isotropic Sm-Co, Fe-Pt, and nano-composite Nd-Fe-B+α-Fe film magnets synthesized using the PLD

    Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    Get PDF
    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of DeD_e=931.2 cm−1^{-1} which agrees very well with recent experimentally derived estimates DeD_e=929.7±2\pm 2~cm−1^{-1} [Science, 324, 1548 (2009)] and DeD_e=934.6~cm−1^{-1} [Science, 326, 1382 (2009)]], as well the best composite theoretical estimates, DeD_e=938±15\pm 15~cm−1^{-1} [J. Phys. Chem. A, 111, 12822 (2007)] and DeD_e=935.1±10\pm 10~cm−1^{-1} [Phys. Chem. Chem. Phys., 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [Science, 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 11Σg−^1\Sigma^-_g state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schr\"odinger equation in small molecules

    Orbital Optimization in the Density Matrix Renormalization Group, with applications to polyenes and \beta-carotene

    Get PDF
    In previous work we have shown that the Density Matrix Renormalization Group (DMRG) enables near-exact calculations in active spaces much larger than are possible with traditional Complete Active Space algorithms. Here, we implement orbital optimisation with the Density Matrix Renormalization Group to further allow the self-consistent improvement of the active orbitals, as is done in the Complete Active Space Self-Consistent Field (CASSCF) method. We use our resulting DMRGCASSCF method to study the low-lying excited states of the all-trans polyenes up to C24H26 as well as \beta-carotene, correlating with near-exact accuracy the optimised complete \pi-valence space with up to 24 active electrons and orbitals, and analyse our results in the light of the recent discovery from Resonance Raman experiments of new optically dark states in the spectrum.Comment: 16 pages, 8 figure

    Quadratic canonical transformation theory and higher order density matrices

    Get PDF
    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT’s accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H2OH2O and N2N2 binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories

    Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory

    Get PDF
    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu2O2]^(2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu2O2]^(2+)

    Extended implementation of canonical transformation theory: parallelization and a new level-shifted condition

    Get PDF
    The canonical transformation (CT) theory has been developed as a multireference electronic structure method to compute high-level dynamic correlation on top of a large active space reference treated with the ab initio density matrix renormalization group method. This article describes a parallelized algorithm and implementation of the CT theory to handle large computational demands of the CT calculation, which has the same scaling as the coupled cluster singles and doubles theory. To stabilize the iterative solution of the CT method, a modification to the CT amplitude equation is introduced with the inclusion of a level shift parameter. The level-shifted condition has been found to effectively remove a type of intruder state that arises in the linear equations of CT and to address the discontinuity problems in the potential energy curves observed in the previous CT studies

    Canonical transformation theory from extended normal ordering

    Get PDF
    The canonical transformation theory of Yanai and Chan [J. Chem. Phys. 124, 194106 (2006)] provides a rigorously size-extensive description of dynamical correlation in multireference problems. Here we describe a new formulation of the theory based on the extended normal ordering procedure of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. On studies of the water, nitrogen, and iron oxide potential energy curves, the linearized canonical transformation singles and doubles theory is competitive in accuracy with some of the best multireference methods, such as the multireference averaged coupled pair functional, while computational timings (in the case of the iron oxide molecule) are two to three orders of magnitude faster and comparable to those of the complete active space second-order perturbation theory. The results presented here are greatly improved both in accuracy and in cost over our earlier study as the result of a new numerical algorithm for solving the amplitude equations
    • …
    corecore